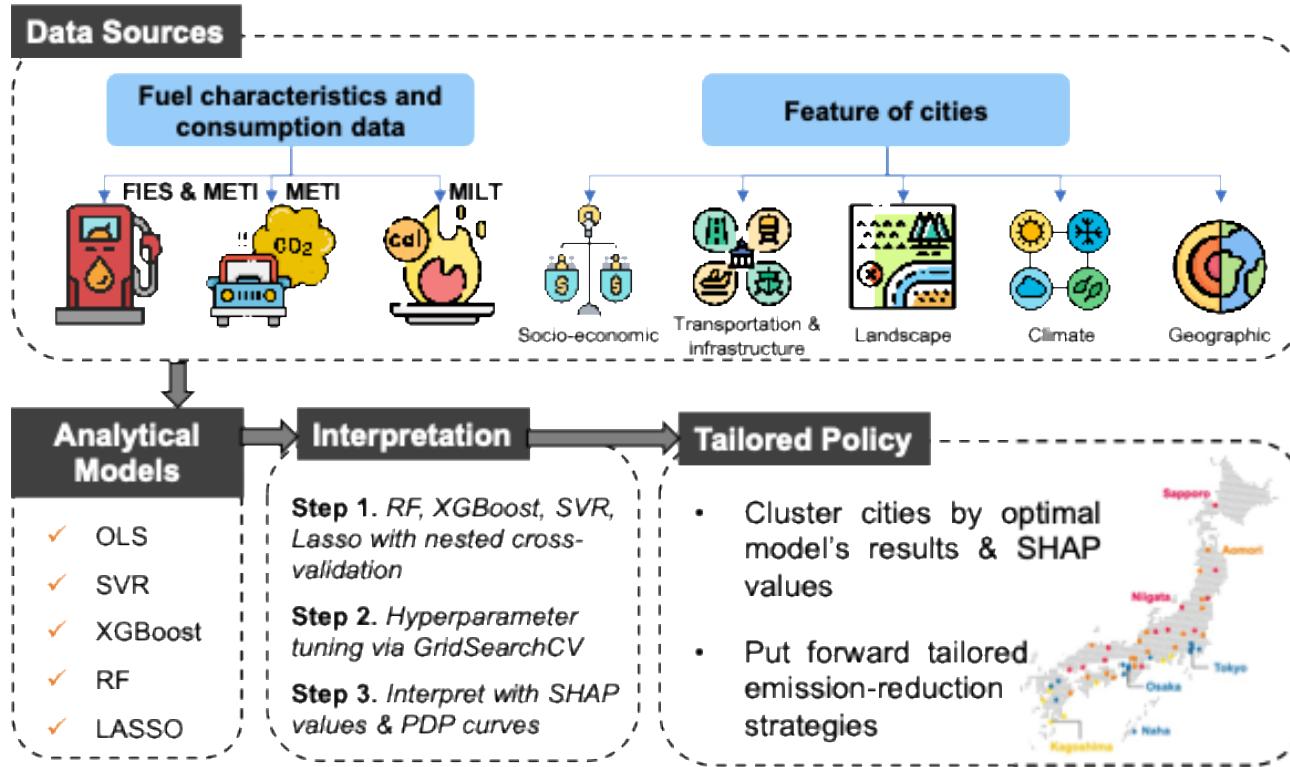
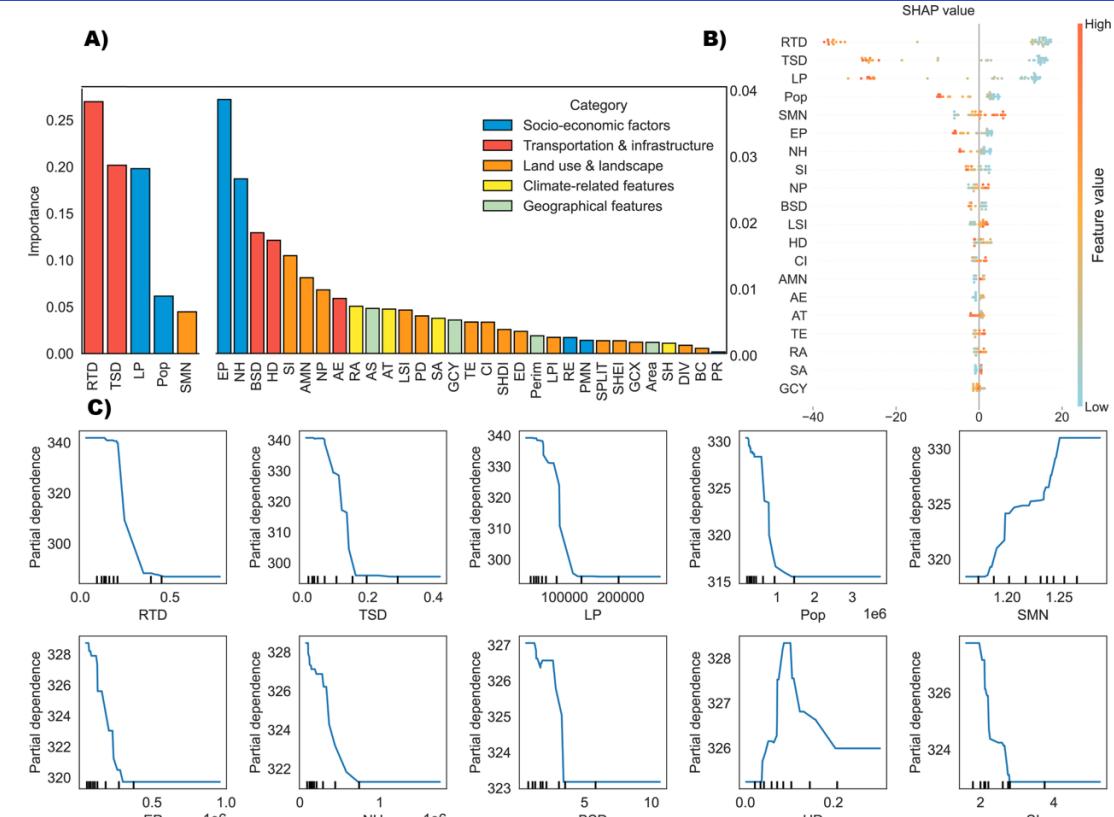


Acceptable sustainable mobility innovation

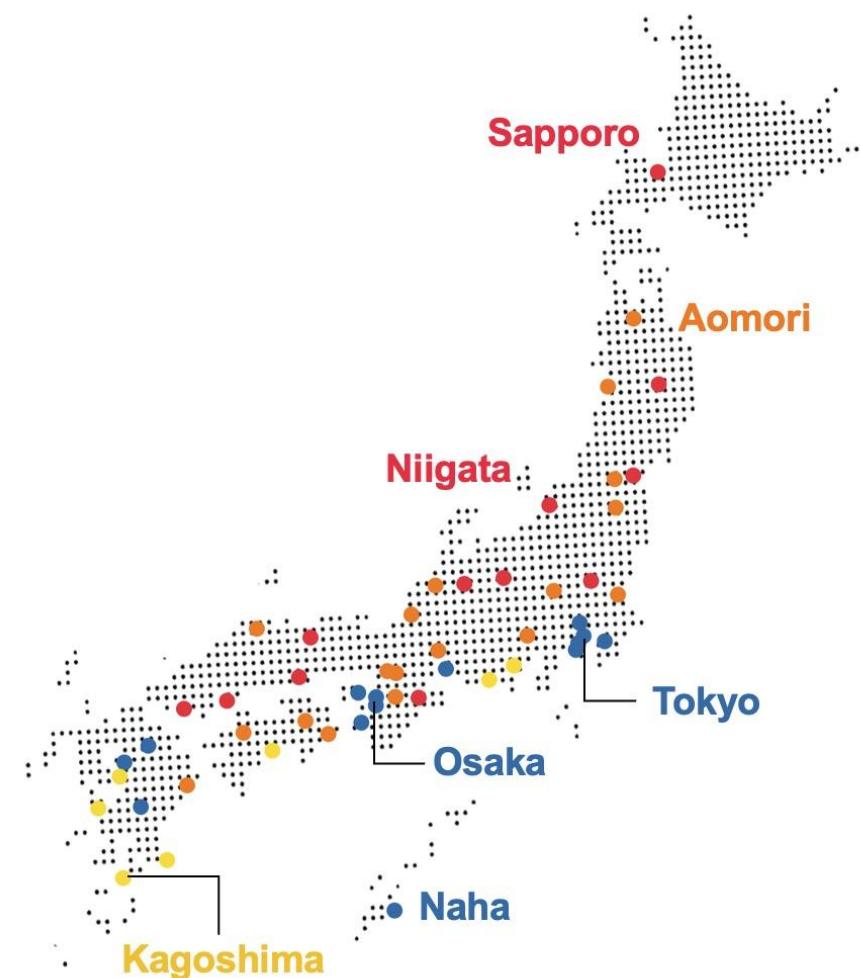


Abbr	Explanation	Abbr	Explanation	Abbr	Explanation	Abbr	Explanation
AE	Average elevation	NP	Number of Patches	HD	Highway density	SH	Sunshine hours
AMN	Patch Area (Mean)	PD	Patch Density	LP	Land price	SHDI	Shannon's Diversity Index
Area	City area	Perim	City perimeter	LPI	Largest Patch Index	SHEI	Shannon's Evenness Index
AS	Average slope	PMN	Proximity Index (Mean)	LSI	Landscape Shape Index	GCX	Geometric Centroid Longitude
AT	Average temperature	Pop	Population	NH	Number of households	GCY	Geometric Centroid Latitude
BC	Boundary Complexity	PR	Patch Richness	SI	Shape coefficient	EP	Elder population
BSD	Bus stop density	RA	Rainfall amount	SMN	Shape Index (Mean)	SHD	Shannon's Homogeneity Index
CI	Compactness Index	RE	Ratio of elderly	SPLIT	Splitting Index	NP	Number of pixels
DIV	Landscape Division Index	RTD	Railway track density	TE	Total Edge	BSD	Bus stop density
ED	Edge Density	SA	Snowfall amount	TSD	Train station density	RTD	Railway track density

Results

Based on the emissions from private vehicle travel and the characteristics of the city, the cities are divided into five categories, and targeted suggestions for emission reduction are proposed.

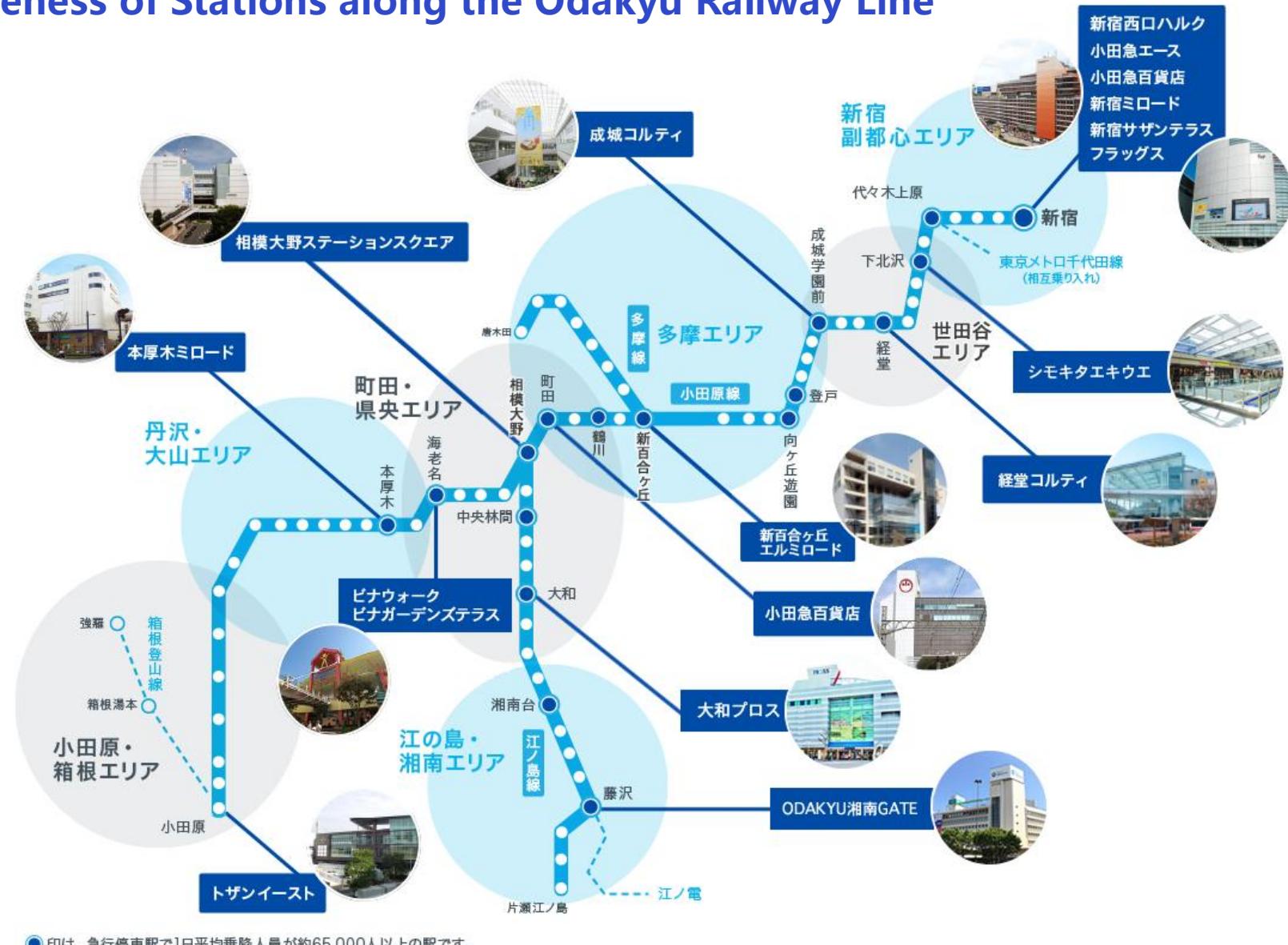
City Clusters	Cities included
LTCs Low-Emission Transit-Oriented Cities	Saitama, Chiba, Tokyo, Yokohama, Nagoya, Osaka, Kobe, Wakayama, Fukuoka, Kumamoto, Naha, Kawasaki, Sakai, Kitakyushu
MESCs Moderate Emission Southern Cities	Shizuoka, Kochi, Saga, Nagasaki, Miyazaki, Kagoshima, Hamamatsu
METDCs Moderate Emission Transit-Deficient Cities	Aomori, Akita, Yamakata, Fukushima, Mito, Maebashi, Kanazawa, Fukui, Kofu, Gifu, Otsu, Kyoto, Nara, Matsue, Tokushima, Takamatsu, Matsuyama, Oita
HECTCs High-Emission Complex Terrain Cities	Sapporo, Morioka, Sendai, Utsunomiya, Niigata, Toyama, Nagano, Tsu, Tottori, Okayama, Hiroshima, Yamakuchi



Study on the Attractiveness of Stations along the Odakyu Railway Line

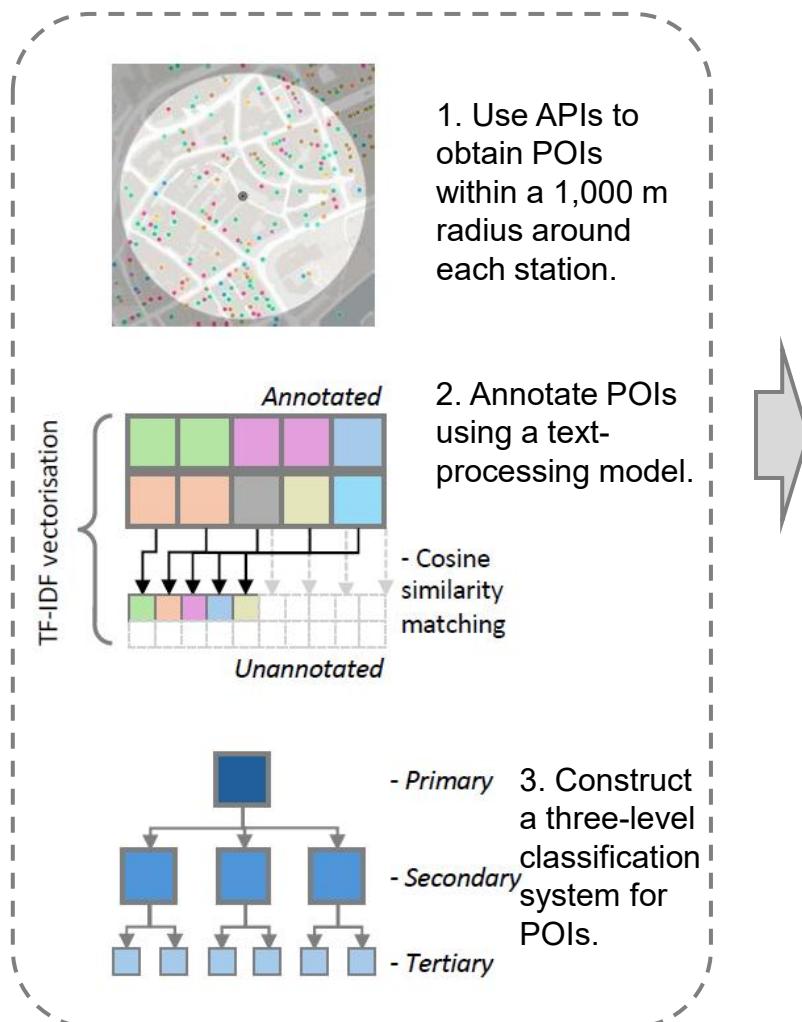
Background

- Urban transportation in Japan relies heavily on the railway system.
- Evaluating **station attractiveness** helps planners understand passenger demand and promote sustainable development.
- Using **point-of-interest (POI)** data, we incorporate the travel needs of passengers with different demographic characteristics into an attractiveness assessment model.
- We take the Odakyu Line in Japan as a case study, a railway corridor that connects central Tokyo with several popular destinations.

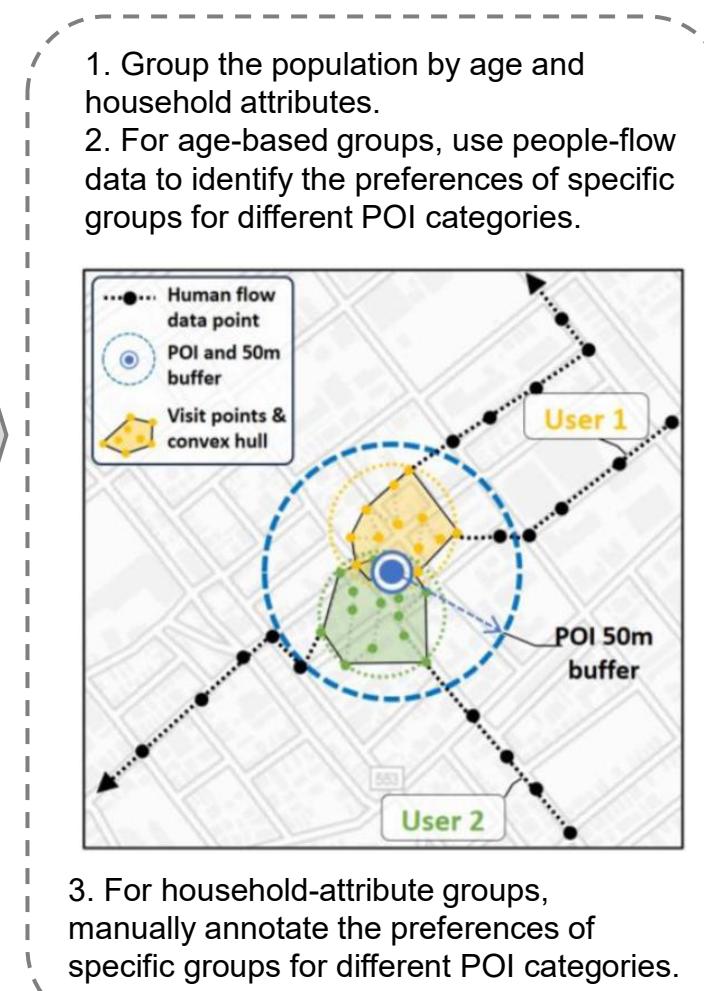


Methods

Step 1: POI data preprocessing



Step 2: Linking POIs with passenger demand



Step 3: Attractiveness evaluation based on a gravity model

1. Decompose station attractiveness g_{ij} into two components: the intrinsic characteristics of station i (v_i) (and passengers' demand for POIs around station j (W_j)). (In addition, following the gravity model, attractiveness is assumed to be a function of distance d .)

$$g_{ij} = k_{ij} v_i^\alpha w_j^\beta d_{ij}^\gamma$$

2. Log-linearize the above expression as the baseline model, and use the evaluation scores of POIs around each station as a proxy for station attractiveness g_{ij} . Estimate the coefficients of the factors:

$$\ln g_{ij} = \ln k_{ij} + \alpha \ln v_i + \beta \ln w_j + \gamma \ln d_{ij} + \varepsilon_{ij}$$

3. Extend the baseline model by incorporating the heterogeneous demand of different groups h and the temporal accessibility of POIs.

$$g_{ijh} = k_{ijh} v_i^\alpha w_{jh}^{\beta'} d_{ijh}^{\gamma'}$$

Results

- There is **no simple proportional relationship** between a station's average daily ridership (i.e., its size) and its overall attractiveness.
- Adjacent stations tend to form **clusters of attractiveness**, where POIs around neighboring stations are more likely to be jointly shared by passengers.
- We identify the ten most attractive stations along the Odakyu Line based on a composite index of accessibility and diversity, and evaluate station attractiveness from two perspectives: **age-specific groups** and **broader demographic segments**.

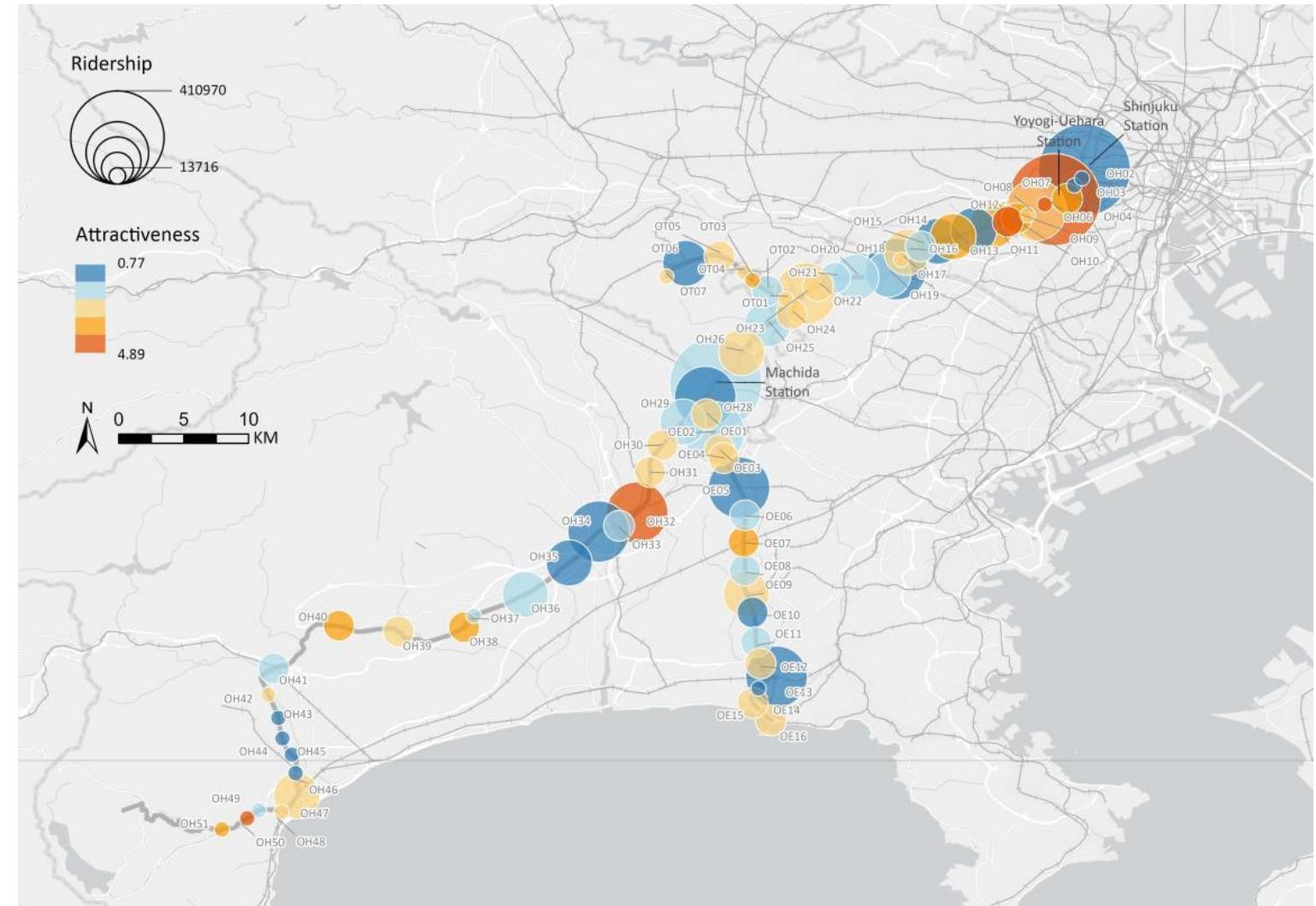


Figure: The Attraction and Scale of 74 Stations on the Odakyu Railway

Results

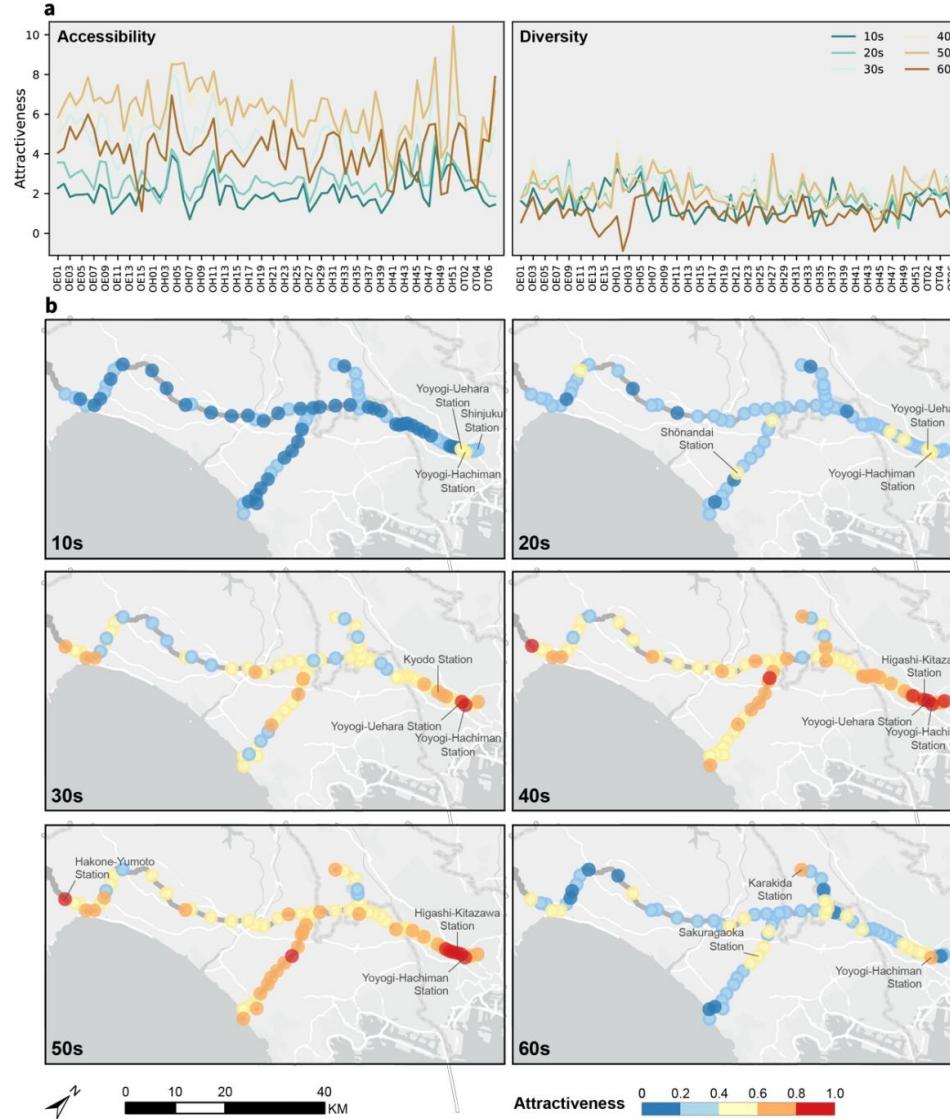


Figure: Attractiveness Evaluation Based on Age Groups

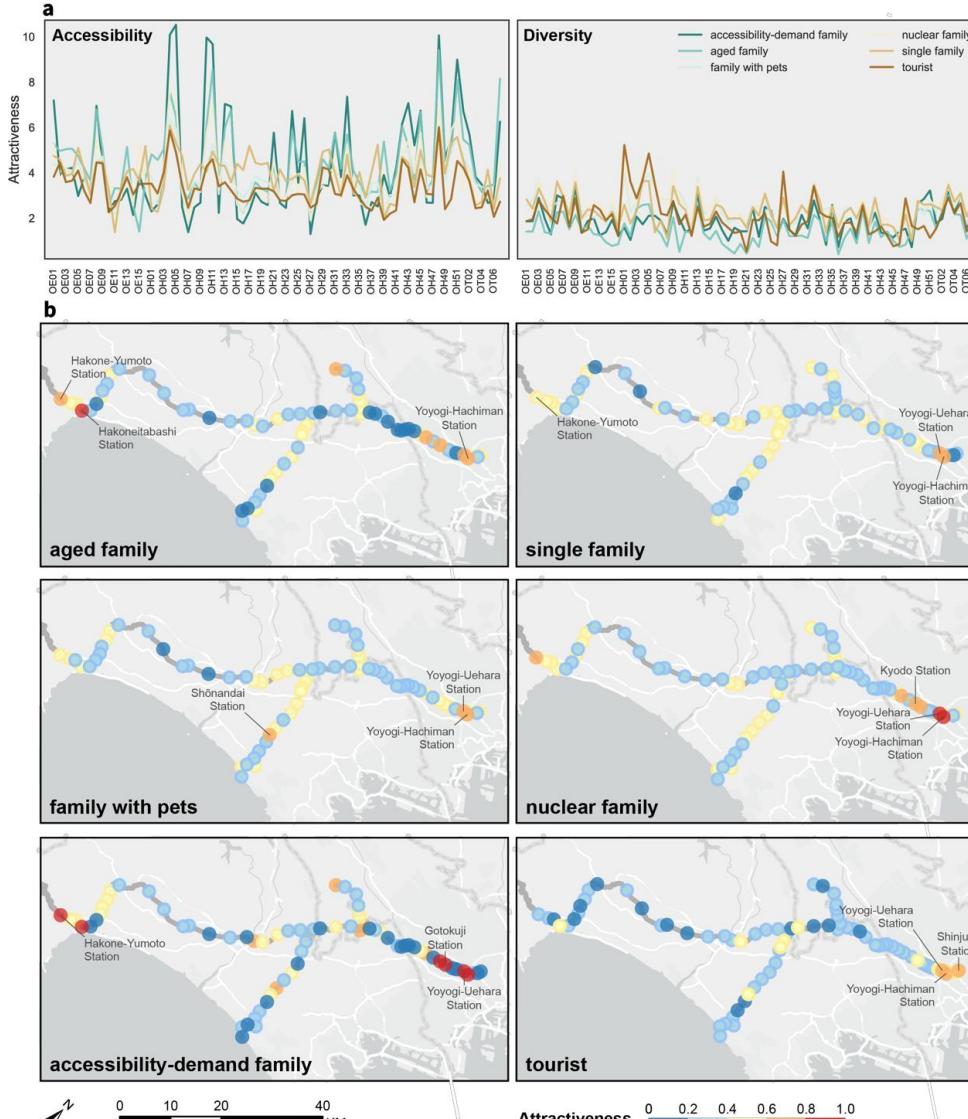


Figure: Attraction Evaluation Based on Population Types

By combining information on Japanese household purchases of new energy vehicles (NEVs), travel demand, and household characteristics, we analyze the heterogeneity in NEV adoption.

- The penetration of NEVs in Japan remains very low, accounting for only 1.4% of households in our survey sample.
- Under current policy conditions, households that purchase NEVs are typically affluent car-owning households. At the same time, they tend to have longer travel distances, higher travel frequency, and larger travel-related carbon footprints.

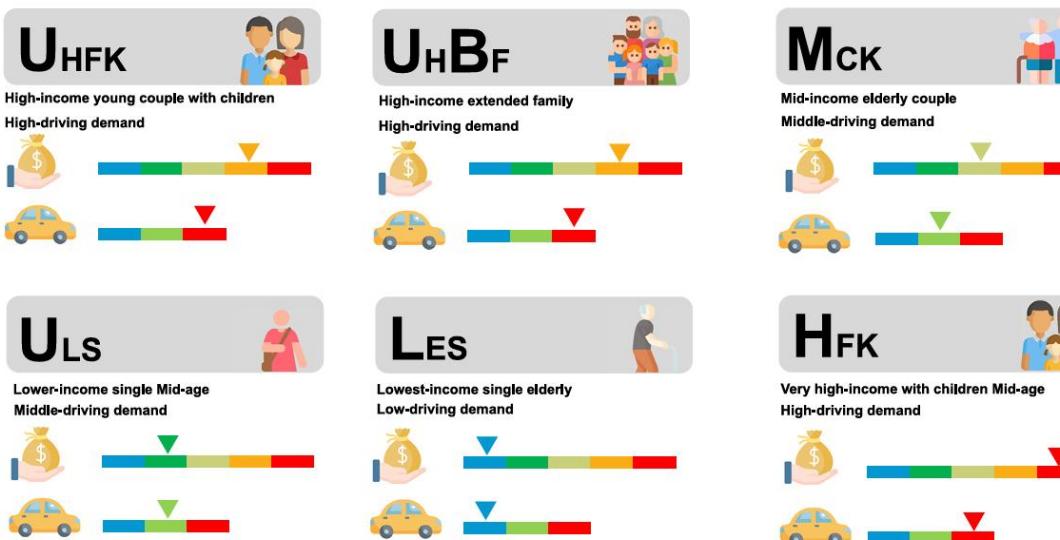
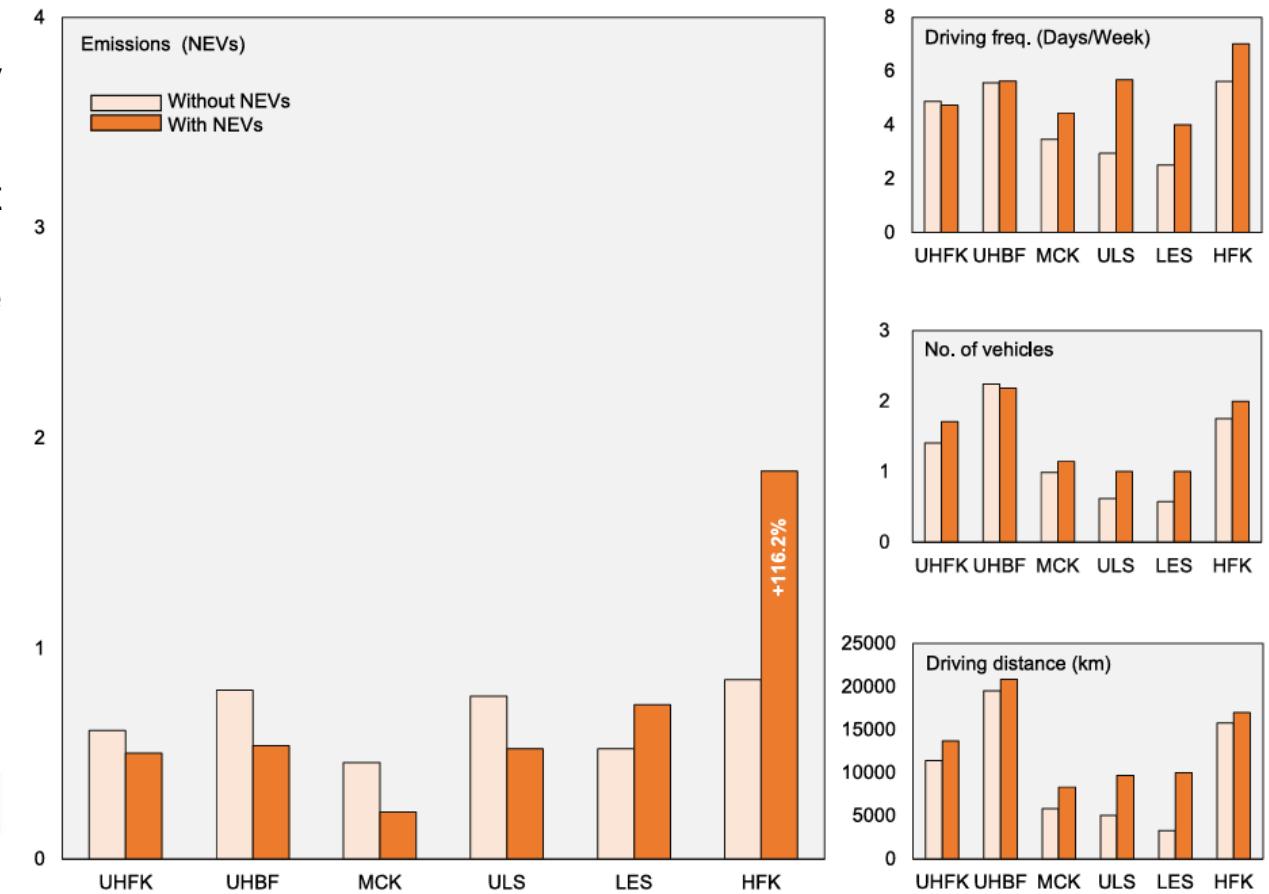
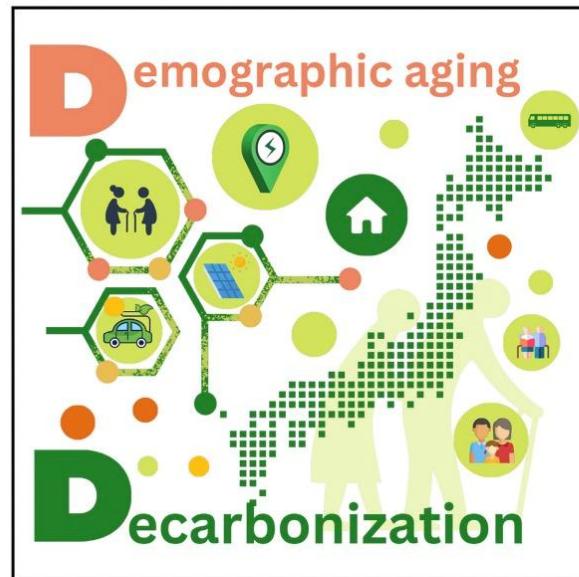


Figure. Differences in car use-related emissions between NEV adopters and non-adopters across household groups.

Cell Reports Sustainability

Demographic transitions hinder climate change mitigation for Japan's shrinking and aging households

Graphical abstract



Authors

Yin Long, Yoshikuni Yoshida,
Liqiao Huang, Peipei Chen, Yi Wu,
Alexandros Gasparatos

Correspondence

longyin@utokyo.ac.jp (Y.L.),
ucbq929@ucl.ac.uk (Y.W.),
gasparatos.alex@gmail.com (A.G.)

In brief

In their study, Long et al. analyze Japanese household energy consumption and emissions. The research finds people's age, household size, and income to be associated with emissions and the adoption of green technologies such as photovoltaics and new energy vehicles. It shows that demographic transitions associated with household aging and shrinking can have significant ramifications on climate change mitigation efforts in the household sector.

Article

Determine factors of adoption

Mobility-related factors rank highest (behavior-driven)

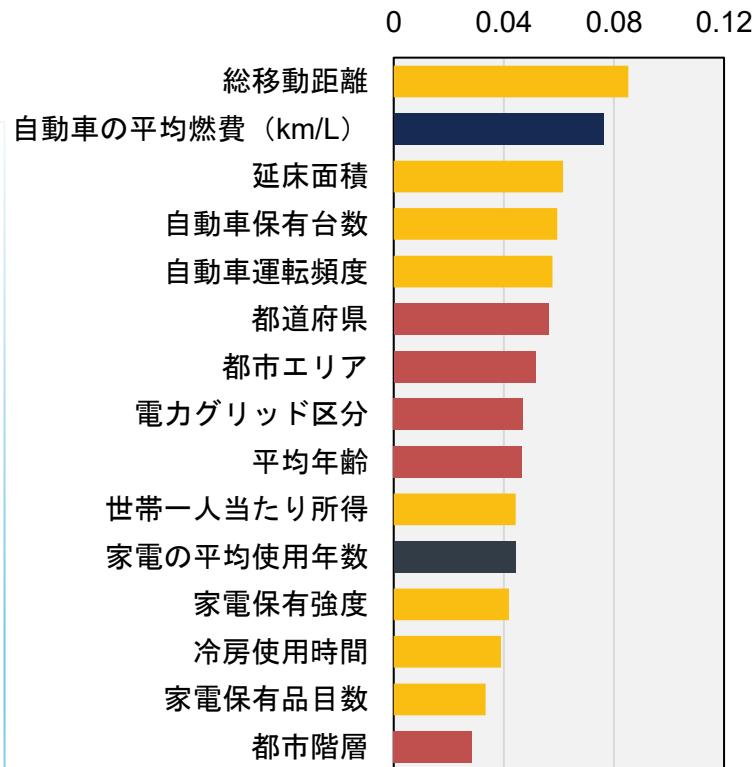
- Longer annual driving distance, higher driving frequency, and a larger number of owned cars ⇒ higher likelihood of EV adoption

Housing and location's effects

- Areas with larger floor space, a higher share of detached houses, and small / medium-sized cities ⇒ more parking space and higher feasibility of home charging

Choke points: / Key bottlenecks: There is a tendency to suppress the adoption of such cars because of the parking space, cost, difficulty of charging, and high substitutes for public transportation in metropolitan areas.

Importance from Random Forest



■ Positive ■ Negative
■ Categories

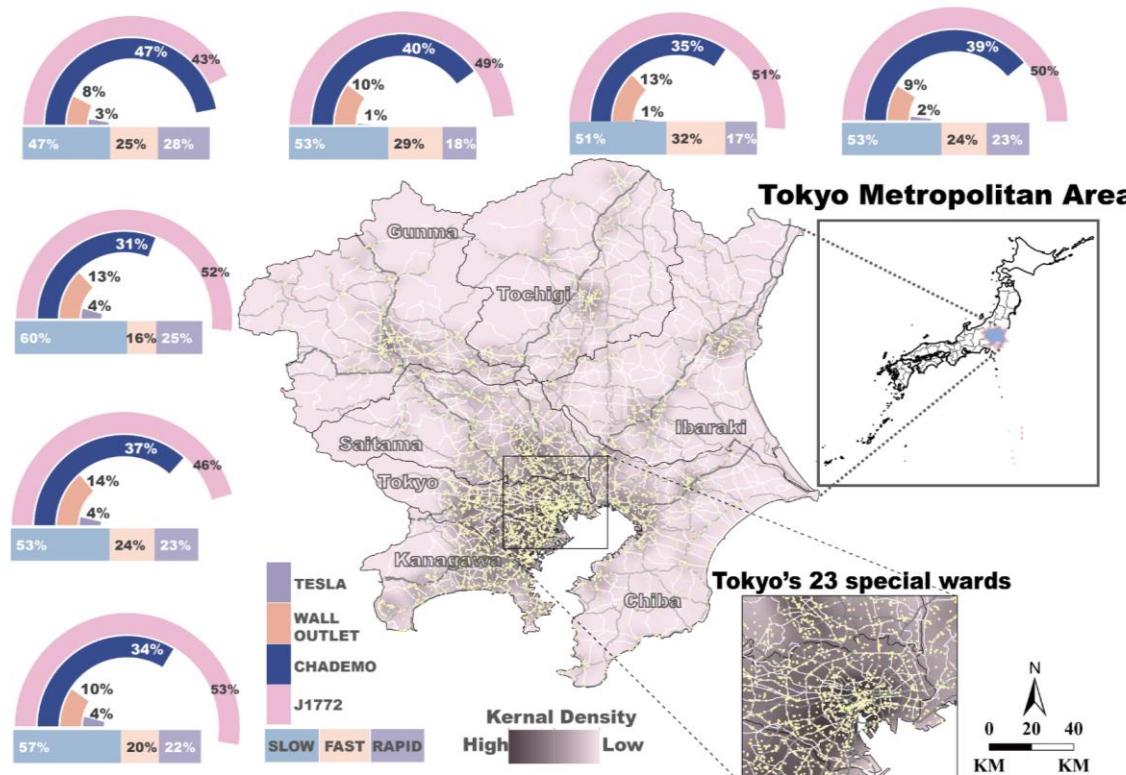
Highlights

- Multiple household characteristics affect energy use and emissions
- Differentiated climate change mitigation technology adoption rates among groups

Results

- Charging infrastructure within the non-urban areas lags behind central urban clusters
- Rapid chargers account for only 23.05% of the total, which is less than half of the proportion of slow chargers.

a Spatial distribution of chargers



b Kernel density by standard and output power

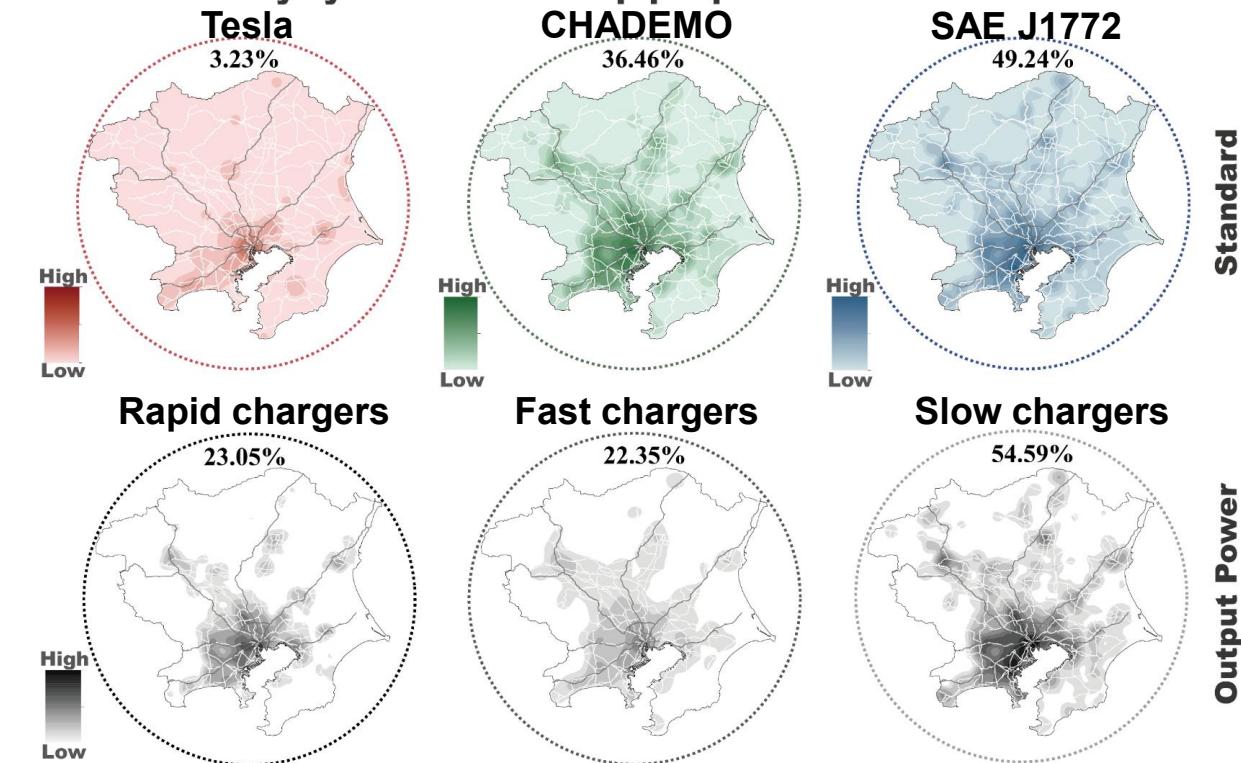
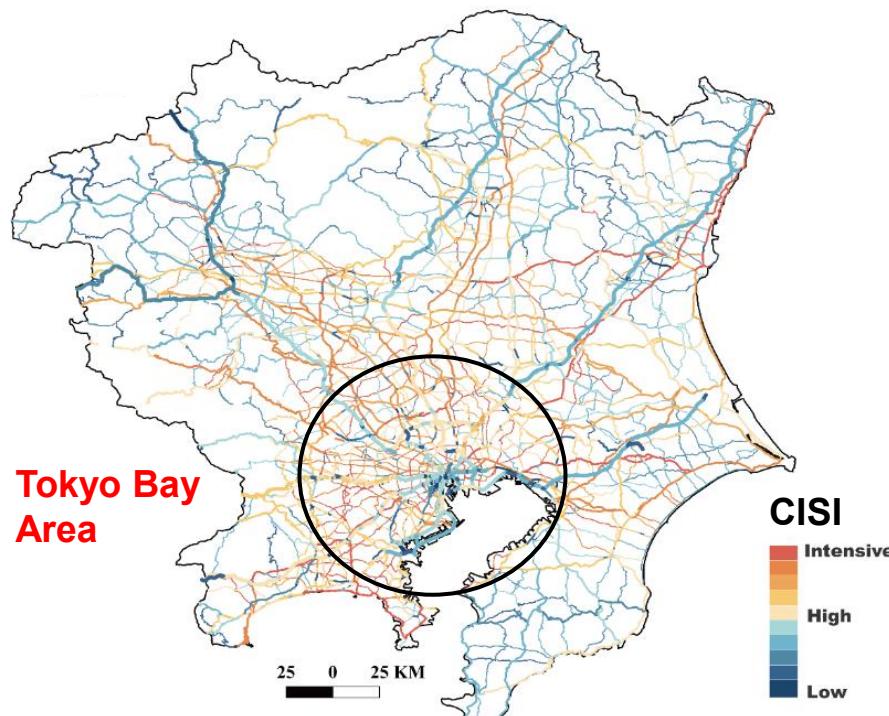


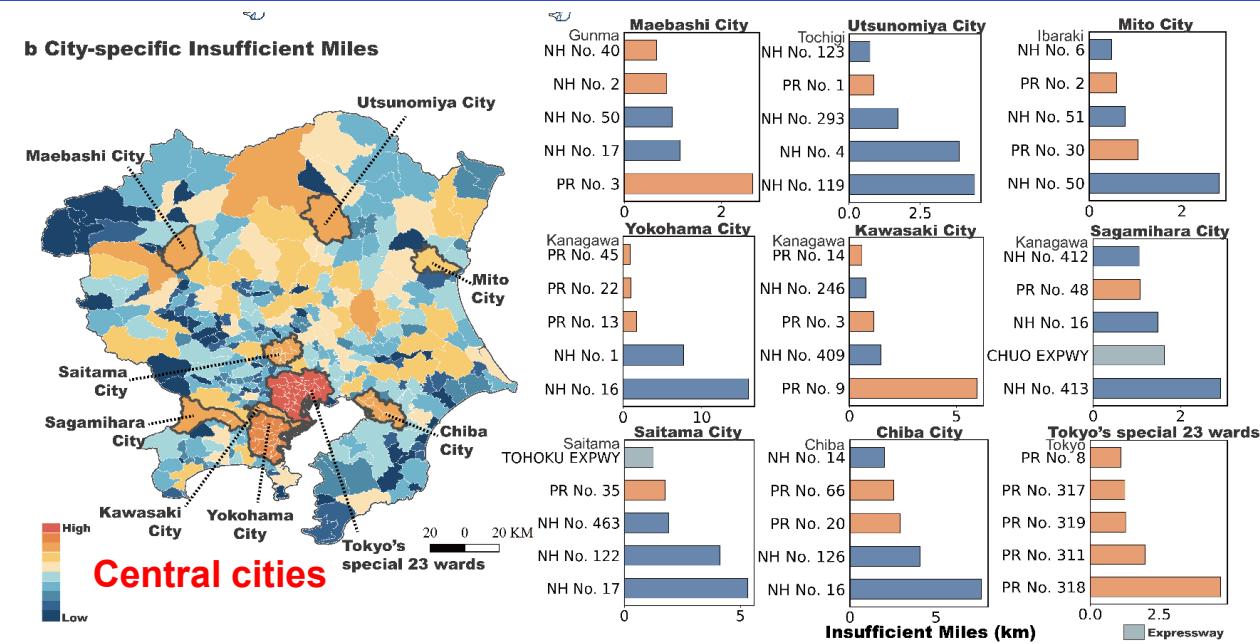
Figure. Spatial distribution of EV chargers and their kernel density by types

Results

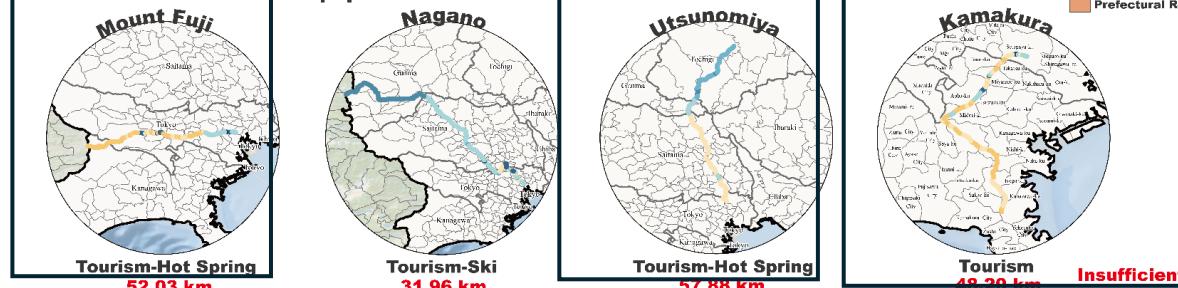


Insufficient miles

- The miles of road where the charging insufficiency index exceeds the average value



c CISI and Insufficient Miles on popular travel routes



Famous and long-distance trips

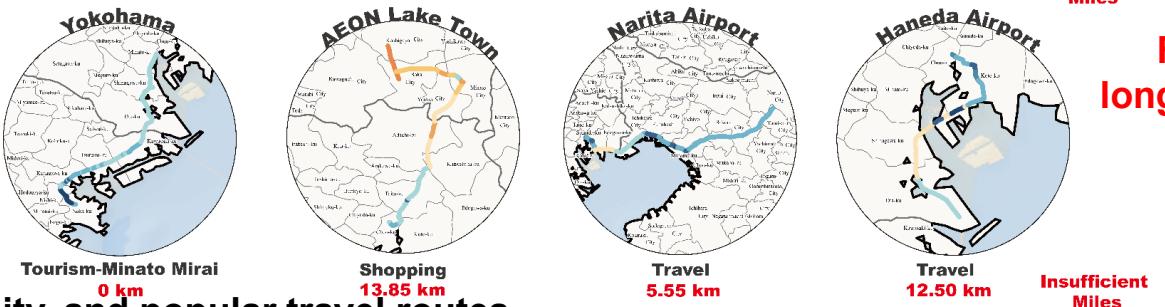
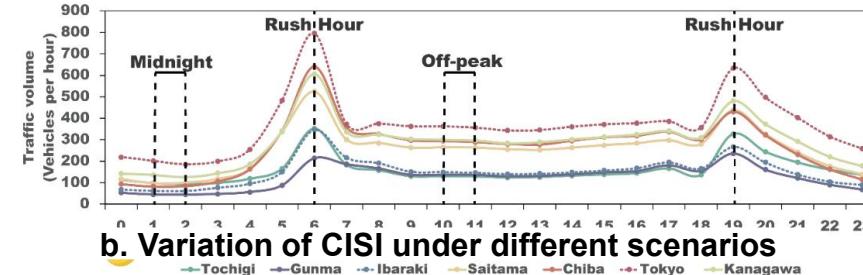


Figure. Charging insufficiency of road, city, and popular travel routes

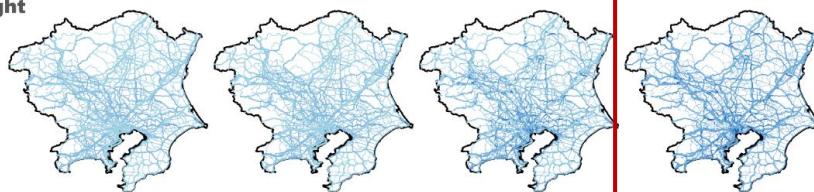
Results

Traffic volume scenarios

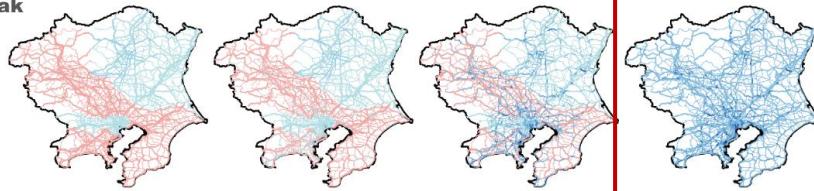


b. Variation of CISI under different scenarios

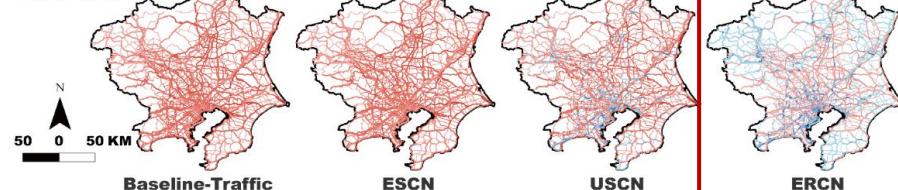
Midnight



Off-peak

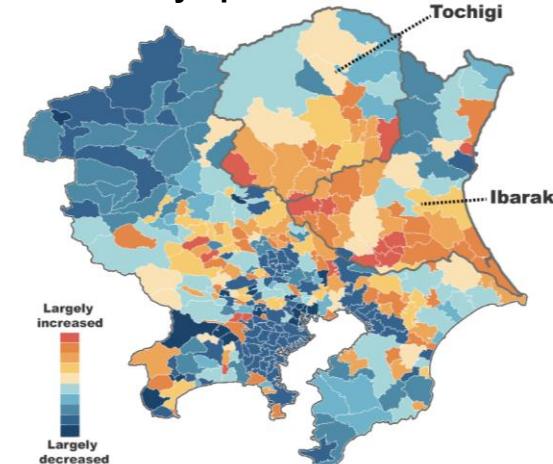


Rush hour

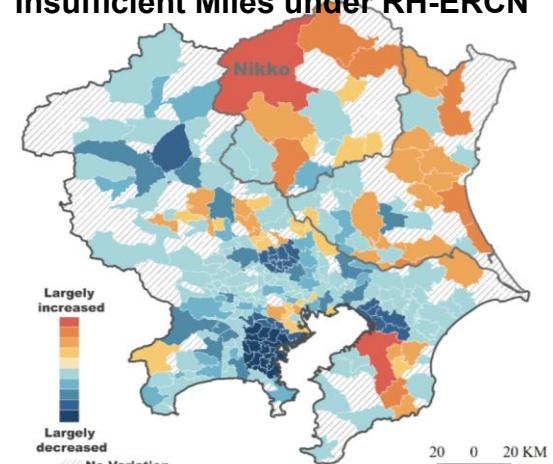


Largely increased Largely decreased

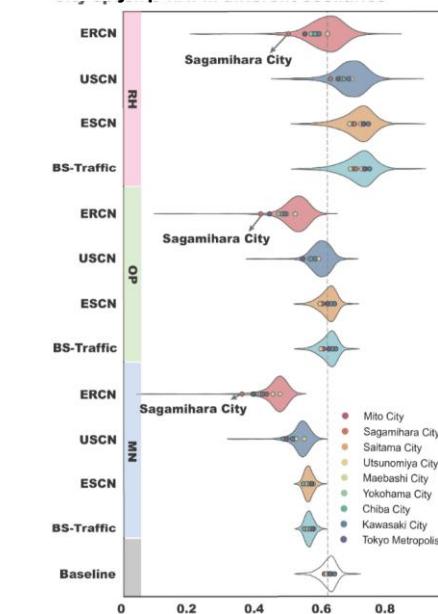
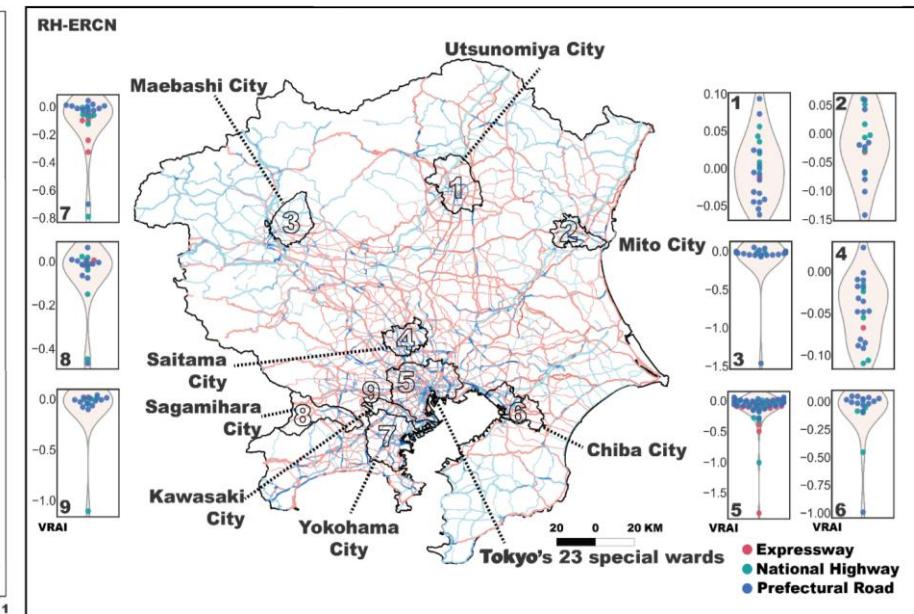
Variation of city-specific CISI under RH-ERCN



Variation of city-specific Insufficient Miles under RH-ERCN



City-specific CISI in different scenarios



Expanding high-output chargers